• Pironi, L. Definitions of intestinal failure and the quick bowel syndrome. Finest. Pract. Res. Clin. Gastroenterol. 30, 173–185 (2016).

    Article 

    Google Scholar 

  • Gardiner, Okay. R. Administration of acute intestinal failure. Proc. Nutr. Soc. 70, 321–328 (2011).

    Article 

    Google Scholar 

  • Allan, P. & Lal, S. Intestinal failure: a evaluate. F1000Res 7, 85 (2018).

    Article 

    Google Scholar 

  • Lappas, B. M., Patel, D., Kumpf, V., Adams, D. W. & Seidner, D. L. Parenteral diet: indications, entry and issues. Gastroenterol. Clin. North Am. 47, 39–59 (2018).

    Article 

    Google Scholar 

  • Brown, S. Okay. et al. Intestinal failure: the evolving demographic and affected person outcomes on house parenteral diet. Acta Paediatr. 107, 2207–2211 (2018).

    Article 

    Google Scholar 

  • Naberhuis, J. Okay., Deutsch, A. S. & Tappenden, Okay. A. Teduglutide-stimulated intestinal adaptation is complemented and synergistically enhanced by partial enteral diet in a neonatal piglet mannequin of quick bowel syndrome. JPEN J. Parenter. Enter. Nutr. 41, 853–865 (2017).

    Article 
    CAS 

    Google Scholar 

  • Barnes, J. L., Hartmann, B., Holst, J. J. & Tappenden, Okay. A. Intestinal adaptation is stimulated by partial enteral diet supplemented with the prebiotic short-chain fructooligosaccharide in a neonatal intestinal failure piglet mannequin. JPEN J. Parenter. Enter. Nutr. 36, 524–537 (2012).

    Article 
    CAS 

    Google Scholar 

  • Wan, X. et al. Partial enteral diet preserves components of intestine barrier perform, together with innate immunity, intestinal alkaline phosphatase (IAP) degree, and intestinal microbiota in mice. Vitamins 7, 6294–6312 (2015).

    Article 
    CAS 

    Google Scholar 

  • Solar, H. et al. Partial enteral diet will increase intestinal sIgA ranges in mice present process parenteral diet in a dose-dependent method. Int. J. Surg. 49, 74–79 (2018).

    Article 

    Google Scholar 

  • Dibb, M., Teubner, A., Theis, V., Shaffer, J. & Lal, S. Assessment article: the administration of long-term parenteral diet. Aliment. Pharmacol. Ther. 37, 587–603 (2013).

    Article 
    CAS 

    Google Scholar 

  • Btaiche, I. F. & Khalidi, N. Metabolic issues of parenteral diet in adults, half 1. Am. J. Well being Syst. Pharm. 61, 1938–1949 (2004).

    Article 
    CAS 

    Google Scholar 

  • Gosmanov, A. R. & Umpierrez, G. E. Administration of hyperglycemia throughout enteral and parenteral diet remedy. Curr. Diab. Rep. 13, 155–162 (2013).

    Article 
    CAS 

    Google Scholar 

  • Cheung, N. W., Napier, B., Zaccaria, C. & Fletcher, J. P. Hyperglycemia is related to opposed outcomes in sufferers receiving complete parenteral diet. Diabetes Care 28, 2367–2371 (2005).

    Article 

    Google Scholar 

  • Kinnare, Okay. F., Bacon, C. A., Chen, Y., Sowa, D. C. & Peterson, S. J. Danger components for predicting hypoglycemia in sufferers receiving concomitant parenteral diet and insulin remedy. J. Acad. Nutr. Eating regimen. 113, 263–268 (2013).

    Article 

    Google Scholar 

  • Coudenys, E., Waele, E. D., Meers, G., Collier, H. & Pen, J. J. Insufficient glycemic management in sufferers receiving parenteral diet lowers survival: a retrospective observational trial. Clin. Nutr. Exp. 17, 1–7 (2018).

    Article 

    Google Scholar 

  • Turnbaugh, P. J. et al. An obesity-associated intestine microbiome with elevated capability for vitality harvest. Nature 444, 1027–1031 (2006).

    Article 

    Google Scholar 

  • Ridaura, V. Okay. et al. Intestine microbiota from twins discordant for weight problems modulate metabolism in mice. Science 341, 1241214 (2013).

    Article 

    Google Scholar 

  • Vrieze, A. et al. Switch of intestinal microbiota from lean donors will increase insulin sensitivity in people with metabolic syndrome. Gastroenterology 143, 913–916 (2012).

    Article 
    CAS 

    Google Scholar 

  • de Groot, P. et al. Donor metabolic traits drive results of faecal microbiota transplantation on recipient insulin sensitivity, vitality expenditure and intestinal transit time. Intestine 69, 502–512 (2020).

    Article 

    Google Scholar 

  • Wang, J. et al. Intestine microbiota as a modulator of paneth cells throughout parenteral diet in mice. JPEN J. Parenter. Enter. Nutr. 42, 1280–1287 (2018).

    Article 
    CAS 

    Google Scholar 

  • Blacher, E., Levy, M., Tatirovsky, E. & Elinav, E. Microbiome-modulated metabolites on the interface of host immunity. J. Immunol. 198, 572–580 (2017).

    Article 
    CAS 

    Google Scholar 

  • Roager, H. M. & Licht, T. R. Microbial tryptophan catabolites in well being and illness. Nat. Commun. 9, 3294 (2018).

    Article 

    Google Scholar 

  • Zelante, T. et al. Tryptophan catabolites from microbiota have interaction aryl hydrocarbon receptor and steadiness mucosal reactivity through interleukin-22. Immunity 39, 372–385 (2013).

    Article 
    CAS 

    Google Scholar 

  • Cervantes-Barragan, L. et al. Lactobacillus reuteri induces intestine intraepithelial CD4+CD8αα+ T cells. Science 357, 806–810 (2017).

    Article 
    CAS 

    Google Scholar 

  • Natividad, J. M. et al. Impaired aryl hydrocarbon receptor ligand manufacturing by the intestine microbiota is a key think about metabolic syndrome. Cell Metab. 28, 737–749 (2018).

    Article 
    CAS 

    Google Scholar 

  • Lin, Y. H. et al. Aryl hydrocarbon receptor agonist indigo protects towards obesity-related insulin resistance by means of modulation of intestinal and metabolic tissue immunity. Int. J. Obes. 43, 2407–2421 (2019).

    Article 

    Google Scholar 

  • Gribble, F. M. & Reimann, F. Operate and mechanisms of enteroendocrine cells and intestine hormones in metabolism. Nat. Rev. Endocrinol. 15, 226–237 (2019).

    Article 
    CAS 

    Google Scholar 

  • Pironi, L. et al. ESPEN tips on persistent intestinal failure in adults. Clin. Nutr. 35, 247–307 (2016).

    Article 

    Google Scholar 

  • Rosmarin, D. Okay., Wardlaw, G. M. & Mirtallo, J. Hyperglycemia related to excessive, steady infusion charges of complete parenteral diet dextrose. Nutr. Clin. Pract. 11, 151–156 (1996).

    Article 
    CAS 

    Google Scholar 

  • Ukleja, A. & Romano, M. M. Issues of parenteral diet. Gastroenterol. Clin. North Am. 36, 23–46 (2007).

    Article 

    Google Scholar 

  • Bodoky, G., Meguid, M. M., Yang, Z. J. & Laviano, A. Results of several types of isocaloric parenteral vitamins on meals consumption and metabolic concomitants. Physiol. Behav. 58, 75–79 (1995).

    Article 
    CAS 

    Google Scholar 

  • Meguid, M. M. et al. Results of steady graded complete parenteral diet on feeding indexes and metabolic concomitants in rats. Am. J. Physiol. 260, E126–E140 (1991).

    CAS 

    Google Scholar 

  • Canfora, E. E., Meex, R. C. R., Venema, Okay. & Blaak, E. E. Intestine microbial metabolites in weight problems, NAFLD and T2DM. Nat. Rev. Endocrinol. 15, 261–273 (2019).

    Article 
    CAS 

    Google Scholar 

  • Heneghan, A. F. et al. Parenteral diet decreases paneth cell perform and intestinal bactericidal exercise whereas rising susceptibility to bacterial enteroinvasion. JPEN J. Parenter. Enter. Nutr. 38, 817–824 (2014).

    Article 
    CAS 

    Google Scholar 

  • Liu, Y. et al. Intestine microbiome fermentation determines the efficacy of train for diabetes prevention. Cell Metab. 31, 77–91 (2020).

    Article 
    CAS 

    Google Scholar 

  • Martin, A. M. et al. The intestine microbiome regulates host glucose homeostasis through peripheral serotonin. Proc. Natl Acad. Sci. USA 116, 19802–19804 (2019).

    Article 
    CAS 

    Google Scholar 

  • Agus, A., Planchais, J. & Sokol, H. Intestine microbiota regulation of tryptophan metabolism in well being and illness. Cell Host Microbe 23, 716–724 (2018).

    Article 
    CAS 

    Google Scholar 

  • Lu, P. et al. Activation of aryl hydrocarbon receptor dissociates fatty liver from insulin resistance by inducing fibroblast progress issue 21. Hepatology 61, 1908–1919 (2015).

    Article 
    CAS 

    Google Scholar 

  • Roh, E. et al. Serum aryl hydrocarbon receptor ligand exercise is related to insulin resistance and ensuing sort 2 diabetes. Acta Diabetol. 52, 489–495 (2015).

    Article 
    CAS 

    Google Scholar 

  • Xu, C. X. et al. Aryl hydrocarbon receptor deficiency protects mice from diet-induced adiposity and metabolic problems by means of elevated vitality expenditure. Int. J. Obes. 39, 1300–1309 (2015).

    Article 
    CAS 

    Google Scholar 

  • Remillard, R. B. & Bunce, N. J. Linking dioxins to diabetes: epidemiology and biologic plausibility. Environ. Well being Perspect. 110, 853–858 (2002).

    Article 
    CAS 

    Google Scholar 

  • Natividad, J. M. et al. Impaired aryl hydrocarbon receptor ligand manufacturing by the intestine microbiota is a key think about metabolic syndrome. Cell Metab. 28, 737–749 (2018).

    Article 
    CAS 

    Google Scholar 

  • Baggio, L. L. & Drucker, D. J. Biology of incretins: GLP-1 and GIP. Gastroenterology 132, 2131–2157 (2007).

    Article 
    CAS 

    Google Scholar 

  • DeFronzo, R. A. et al. The impact of insulin on the disposal of intravenous glucose. Outcomes from oblique calorimetry and hepatic and femoral venous catheterization. Diabetes 30, 1000–1007 (1981).

    Article 
    CAS 

    Google Scholar 

  • Ying, W. et al. Adipose tissue B2 cells promote insulin resistance by means of leukotriene LTB4/LTB4R1 signaling. J. Clin. Make investments. 127, 1019–1030 (2017).

    Article 

    Google Scholar 

  • Kalafateli, M. et al. Malnutrition and sarcopenia predict post-liver transplantation outcomes independently of the mannequin for end-stage liver illness rating. J. Cachexia Sarcopenia Muscle 8, 113–121 (2017).

    Article 

    Google Scholar 

  • Pichler, J., Chomtho, S., Fewtrell, M., Macdonald, S. & Hill, S. Physique composition in paediatric intestinal failure sufferers receiving long-term parenteral diet. Arch. Dis. Youngster. 99, 147–153 (2014).

    Article 

    Google Scholar 

  • Cani, P. D. et al. Metabolic endotoxemia initiates weight problems and insulin resistance. Diabetes 56, 1761–1772 (2007).

    Article 
    CAS 

    Google Scholar 

  • Lamas, B. et al. CARD9 impacts colitis by altering intestine microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat. Med. 22, 598–605 (2016).

    Article 
    CAS 

    Google Scholar 

  • Chimerel, C. et al. Bacterial metabolite indole modulates incretin secretion from intestinal enteroendocrine L cells. Cell Rep. 9, 1202–1208 (2014).

    Article 
    CAS 

    Google Scholar 

  • Sandoval, D. A. & D’Alessio, D. A. Physiology of proglucagon peptides: function of glucagon and GLP-1 in well being and illness. Physiol. Rev. 95, 513–548 (2015).

    Article 
    CAS 

    Google Scholar 

  • Deng, G. et al. Glucagon-like peptide-2 modulates enteric Paneth cells immune response and alleviates intestine irritation throughout intravenous fluid infusion in mice with a central catheter. Entrance Nutr. 8, 688715 (2021).

    Article 

    Google Scholar 

  • Matthews, D. R. et al. Homeostasis mannequin evaluation: insulin resistance and beta-cell perform from fasting plasma glucose and insulin concentrations in man. Diabetologia 28, 412–419 (1985).

    Article 
    CAS 

    Google Scholar 

  • Horan, T. C., Andrus, M. & Dudeck, M. A. CDC/NHSN surveillance definition of well being care-associated an infection and standards for particular sorts of infections within the acute care setting. Am. J. Infect. Management 36, 309–332 (2008).

    Article 

    Google Scholar 

  • Abt, M. C. et al. Commensal micro organism calibrate the activation threshold of innate antiviral immunity. Immunity 37, 158–170 (2012).

    Article 
    CAS 

    Google Scholar 

  • Folkes, L. Okay. & Wardman, P. Enhancing the efficacy of photodynamic most cancers remedy by radicals from plant auxin (indole-3-acetic acid). Most cancers Res. 63, 776–779 (2003).

    CAS 

    Google Scholar 

  • Ji, Y., Gao, Y., Chen, H., Yin, Y. & Zhang, W. Indole-3-acetic acid alleviates nonalcoholic fatty liver illness in mice through attenuation of hepatic lipogenesis and oxidative and inflammatory stress. Vitamins 11, 2062 (2019).

    Article 
    CAS 

    Google Scholar 

  • Guo, H. et al. Multi-omics analyses of radiation survivors determine radioprotective microbes and metabolites. Science 370, eaay9097 (2020).

    Article 
    CAS 

    Google Scholar 

  • Livak, Okay. J. & Schmittgen, T. D. Evaluation of relative gene expression knowledge utilizing real-time quantitative PCR and the two−ΔΔCT technique. Strategies 25, 402–408 (2001).

    Article 
    CAS 

    Google Scholar 

  • Edgar, R. C. UPARSE: extremely correct OTU sequences from microbial amplicon reads. Nat. Strategies 10, 996–998 (2013).

    Article 
    CAS 

    Google Scholar 

  • Caporaso, J. G. et al. QIIME permits evaluation of high-throughput group sequencing knowledge. Nat. Strategies 7, 335–336 (2010).

    Article 
    CAS 

    Google Scholar 

  • Qi, Z. et al. BMP restricts stemness of intestinal Lgr5+ stem cells by immediately suppressing their signature genes. Nat. Commun. 8, 13824 (2017).

    Article 
    CAS 

    Google Scholar 

  • Advantage, S. & Vidal-Puig, A. GTTs and ITTs in mice: easy checks, advanced solutions. Nat. Metab. 3, 883–886 (2021).

    Article 

    Google Scholar